b)
$$n \rightarrow n+1:$$

Assume the claim holds for n. Then
 $S_{n+1} = S_n + q^{n+1} = \frac{1-q^{n+1}}{1-q} + q^{n+1}$
 $= \frac{1-q^{n+1} + (1-q)q^{n+1}}{1-q} = \frac{1-q^{n+1}}{1-q}$
According to Example 3.1 ii) $\lim_{n \to \infty} q^n = 0$
Thus
 $\lim_{n \to \infty} S_n = \frac{1}{1-q}$
ii) The "harmonic series" of Example 3.4
is divergent.
iii) The series $\sum_{k=1}^{\infty} \frac{1}{n(n+1)}$ is convergent
 $\frac{Proof!}{K}$
We have to show that the sequence $(S_n)_{n\in\mathbb{N}}$
with $S_n = \sum_{k=1}^{n} \frac{1}{k(k+1)}$ has a $\lim_{n \to \infty} \frac{1}{k}$
We simplify $\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$
 $= (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{4}) + \dots + (\frac{1}{n} - \frac{1}{n+1})$

and so
$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1} \right) = 1$$

$$\implies \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$

$$\frac{Convergence \ criteria :}{Xet (a_n)_{n \in \mathbb{N}} \ be \ a \ sequence \ in \ \mathbb{R} \ with \\ S_n = \sum_{k=1}^n a_n \ , \ n \in \mathbb{N} \\ Then, \ Prop. 3.4 \ and \ 3.5 \ give : \\ \frac{Proposition \ 3.9 :}{The \ series \ \sum_{k=1}^{\infty} a_k \ is \ convergent \ if \ and \\ only \ if \ \left| \sum_{k=l}^n a_k \right| \longrightarrow O(n \ge l \longrightarrow \infty)$$

 $\frac{Proof:}{|S_n - S_e|} = \left| \sum_{k=l+1}^{n} q_k \right|. \quad Use \text{ propositions}$ 3.4 and 3.5.

$$\sum_{K=1}^{\infty} q_{K} \left(Choose \quad n=\ell \text{ in } \operatorname{Prop. 3.9} \right)$$
ii) The condition $a_{K} \rightarrow 0 (K \rightarrow \infty)$ is not
"sufficient" for convergence (e.g. harmonic
serien)
$$\frac{\operatorname{Proposition 3.10}}{\operatorname{Proposition 3.10}} \left(\operatorname{Quotient criterion} \right):$$

$$\frac{\operatorname{Vet}}{\operatorname{QK}} a_{K} \neq 0, \quad K \in \mathbb{N}.$$
i) If

$$\lim_{K \rightarrow \infty} \sup \left| \frac{a_{K+1}}{a_{K}} \right| < 1,$$
then $\sum_{K=1}^{\infty} a_{K}$ is convergent.
ii) If

$$\lim_{K \rightarrow \infty} \inf \left| \frac{a_{K+1}}{a_{K}} \right| > 1,$$
then $\sum_{K=1}^{\infty} a_{K}$ is divergent.

$$\frac{\operatorname{Proof:}}{a_{K}} a_{K} = \lim_{K \rightarrow \infty} \sup \left| \frac{a_{K+1}}{a_{K}} \right| = \lim_{K \rightarrow \infty} \sup_{K \geq n} \left| \frac{a_{K+1}}{a_{K}} \right| < 1$$
Choose $q \in \mathbb{R}$ s.t. $q_{0} < q < 1$. Then $\exists n_{0} \in \mathbb{N}$
with $\forall n \geq n_{0}: \sup_{K \geq n} \left| \frac{a_{K+1}}{a_{K}} \right| \leq q$, and

in particular for n=no also

$$\forall k \ge n_{0}: \left|\frac{a_{k+1}}{a_{k}}\right| \le q.$$
Then $|a_{k}| = \left|\frac{a_{k}}{a_{k-1}} \cdot \frac{a_{k+1}}{a_{k-2}} \cdots \frac{a_{n_{n+1}}}{a_{n_{0}}}\right|$

$$\stackrel{\leq}{=} \frac{q^{-N_{0}}|a_{n_{0}}|, q^{k}}{=:c}$$

$$\Rightarrow \left|\sum_{k=\ell}^{n} a_{k}\right| \le \sum_{k=\ell}^{n} |a_{k}| \le c\sum_{k=\ell}^{n} q^{k} \le cq^{\ell} \frac{1}{1-q}$$
(indeed $\sum_{k=\ell}^{n} q^{k} \le \sum_{k=0}^{\infty} q^{k} - \sum_{k=0}^{\ell-1} q^{k} = \frac{1}{1-q} - \frac{1-q^{\ell}}{1-q}$

$$\Rightarrow \left|\sum_{k=\ell}^{n} a_{k}\right| \le cq^{\ell} \frac{1}{1-q} \rightarrow 0 \text{ (}n \ge \ell \rightarrow \infty\text{)}\right|$$
Prop. $3.9 \Rightarrow \sum_{k=1}^{\infty} a_{k}$ is convergent
ii) analogous
$$\frac{E \times a_{n}ple \ 3.8:}{i} \xrightarrow{n} nd we have for n \ge 3$$
 $\left|\frac{a_{n+1}}{a_{n}}\right| = \frac{(n+1)^{2}x^{n}}{2^{n+1}n^{2}} = \frac{1}{2}(1+\frac{1}{n})^{2}$

$$\leq \frac{1}{2} \left(1 + \frac{1}{3} \right)^2 = \frac{8}{9} = :9_0 < 1,$$

Prop. 3.10 \implies the quotient criterion is
satisfied
 \square

ii) For
$$a_n := \frac{1}{n^2}$$
 we obtain the converging
sequence $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n^2}$
We have
 $\left|\frac{a_{n+1}}{a_n}\right| = \frac{n^2}{(n+1)^2} < 1 \quad \forall n \ge 1$
However: there is no $q < 1$ with
 $\left|\frac{a_{n+1}}{a_n}\right| \le q_0 \quad \forall n \ge n_0$
 \Rightarrow We are not allowed to use the
quotient criterion !
Use different reasoning for the proof:
According to Example 3.7 iii) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$
converges $\Rightarrow \sum_{n=1}^{\infty} \frac{2}{n(n+1)}$ also converges
since $\forall n\ge 1$: $\frac{1}{n^2} \le \frac{2}{n(n+1)}$, we thus have:
 $s_n = \sum_{k=1}^{\infty} \frac{1}{k^*} \le 2 \sum_{k=1}^{\infty} \frac{1}{k(k+1)} = 2$
 \Rightarrow so is monotonically increasing and bounded!
Prop. $3.8 \Rightarrow$ convergent \square

S4. Continuity
S4.1 Zimits of Functions
So far we can compute limits of expressions
like
$$g_{K} = \frac{q_{K}b_{K} + C_{K}}{d_{K}}$$

with $a_{K} \rightarrow a, b_{K} \rightarrow b, C_{K} \rightarrow c, d_{K} \rightarrow d \quad (K \rightarrow \infty)$
More generally, we can determine for a
function $f: D \rightarrow R$ on $D \subset R$ the
convergence of the sequence $g_{K} = f(X_{K})$,
where $(X_{K})_{K \in \mathbb{N}}$ with $X_{K} \rightarrow X_{0} \ (K \rightarrow \infty)$.
The limit X_{0} of the sequence $(X_{K})_{K \in \mathbb{N}}$ doesn't
have to be inside D .
Example 4.1:
Zet $f(x) = \frac{x^{2}-1}{x-1}$, $x \neq 1$. The function f has
 a "singularity" at $x = 1$. Then
 $x^{2}-1 = (x+1)(x-1) \Rightarrow f(x) = x+1$ for $x \neq 1$
Therefore, for a sequence $1 \neq x_{K} \rightarrow x_{0} := 1$
for $K \rightarrow \infty$ we obtain $f(x_{K}) = x_{K} + 1 \rightarrow 2$
 $(K \rightarrow \infty)$

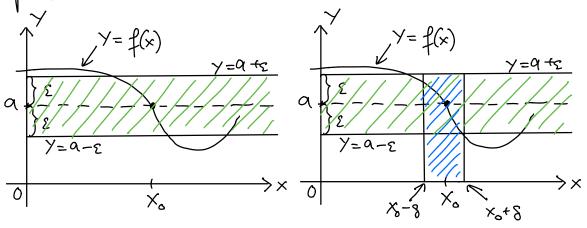
Definition 4.1:
For a set DCR, we define its "closure" D
as the set of all points in D as well as
all limit points of D (limits of sequences
in D).
Zet f: D
$$\rightarrow$$
 R, x \in D.
Definition 4.2:
f has a limit at R at x, if fareach
sequence $(X_K)_{K\in\mathbb{N}}$ in D with $X_K \rightarrow X_0(K \rightarrow \infty)$
we have $f(X_K) \rightarrow a$ $(K \rightarrow \infty)$
Notation: $\lim_{X \rightarrow X_0} f(X) = a$
Example 4.2:
For the function f in Example 4.1,
we have $\lim_{X \rightarrow 1} f(X) = 2$
Remark 4.1:
If $\lim_{X \rightarrow X_0} f(X) =: a$ exists, and if further $X_K \in D$,
then $a = f(X_0)$. (Consider the constant sequence
 $X_{K=X_0} \in D$, $K \in \mathbb{N}$)

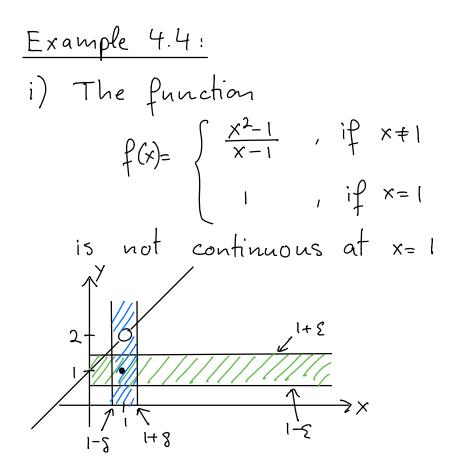
ii) Let
$$D = \mathbb{R} \setminus \{0\}, f(x) = \frac{1}{x}, x \neq 0$$
. Then
we have for $x_{k} \rightarrow x_{0} \neq 0$ according to
Prop. 3.3: $f(x_{k}) \rightarrow \frac{1}{x}(k \rightarrow \infty)$
At $x_{0} = 0$ the function f does not have a limit.
Consider for example $x_{k} = \frac{1}{k} \rightarrow 0(k \rightarrow \infty)$

with
$$f(x_{\kappa}) = \kappa \rightarrow \infty \ (\kappa \rightarrow \infty)$$
.
iii) $\forall \text{et} \ f(x) = \sin\left(\frac{\pi}{\kappa}\right)$. Then we have
 $f(1) = \sin \pi = 0$, $f(\frac{1}{2}) = \sin 2\pi = 0$,
 $f(\frac{1}{3}) = \sin 3\pi = 0$, $f(\frac{1}{4}) = \sin 4\pi = 0$
 $\sin(2\pi) \sqrt{9}, f(0.01) = f(0.001) = f(0.0001) = 0$
But $\lim_{\kappa \rightarrow 0} \sin(\frac{\pi}{\kappa})$ does not exist
 $\frac{1}{\kappa}$
iv) The piecewise constant function
 $f: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$ with
 $f(x) = \begin{cases} \alpha, x < 0 \\ b, x > 0 \end{cases}$
is continuous at every $x, \neq 0$. But for $\alpha \neq b$
there exists no continuous completion at $x = 0$

§4.2 Continuity criteria Proposition 4.1: Let f: D -> R, x. ED. Then the following are equivalent i) (sequence criterion) f is continuous at xo according to Definition 4.3 ii) (Weierstrass E-S criterion): Y E>O J S>O Y XED: $|x - x_{\circ}| < S \implies |f(x) - f(x_{\circ})| < \varepsilon$ iii) For each interval VCR with f(x) EV, we have that U=f-'(V) is an interval in D containing x. Proof. $i) \xrightarrow{i} ii)$ Let (xn)nerri CD be a sequence with lim xn = xo and lim f (xn) = f(x.). Assume ii) does not hold. Then there exists 5>0, s.t. there is no \$>0 with 17(x)-f(x) < E V x e D with |x-x] < 8 \implies $\exists x \in D$ with $|x - x_0| < \delta$, but $|f(x) - f(x_0)| \ge \delta$

Thus for every natural number
$$n \ge 1$$
, there
exists $x_n \in D$ with:
 $|x_n - x_i| < \frac{1}{n}$ and $|f(x_n) - f(x_n)| \ge \varepsilon$ (*)
 $\Rightarrow \lim_{n \to \infty} x_n = x_n$ fix continuous
 $\lim_{n \to \infty} x_n = x_n$ fix continuous
 $\lim_{n \to \infty} x_n = x_n$ fix continuous
But this is in contradiction to (*)
(i) $\Rightarrow i$): Assume ii) holds. Then we have
to show that for every sequence $(x_n)_{n\in\mathbb{N}}$ with
 $x_n \in D$ and $\lim_{n \to \infty} x_n = x_n$ we have
 $\lim_{n \to \infty} f(x_n) = f(x_n)$
Yet $\varepsilon > 0$ and let $s > 0$ be given according
to ii). As $\lim_{n \to \infty} x_n = x_n$, there exists $n \in \mathbb{N}$,
with $|x_n - x_n| < s \ \forall n \ge n_n$.
 $\Rightarrow |f(x_n) - f(x_n)| < \varepsilon \ \forall n \ge n_n \Rightarrow \inf_{n \to \infty} f(x_n) = f(x_n)$





ii) Let
$$D = \mathbb{R}$$
, $X_Q : \mathbb{R} \to \mathbb{R}$ be the
"characteristic function" of Q with
 $f(x) := X_Q = \begin{cases} 1, & x \in Q \\ 0, & x \not\in Q \end{cases}$

Then f(x) is discontinuous everywhere on Qas $f^{-1}((\frac{1}{2}, \frac{3}{2})) = Q$ and Q is not an interval containing x_0 .